Forskere har kortlagt tsetse-fluens DNA. Det skaber håb om, at man fremover kan mindske udbredelsen af sovesyge og ikke mindst af de kvægsygdomme, der spredes gennem tsetse-fluen og koster afrikanske bønder dyrt.
24 April 2014, Rome/Vienna (FAO): Scientists have cracked the genetic code of the bloodsucking tsetse fly, prompting hope that the breakthrough will help future efforts to control one of the most devastating livestock diseases in sub-Saharan Africa spread by the insect.
The tsetse genome was sequenced and annotated during a 10-year international collaborative effort that involved the Insect Pest Control Laboratory run jointly by the United Nations Food and Agriculture Organization (FAO) and the International Atomic Energy Agency (IAEA) in Vienna.
The achievement allows scientists to better study the fly’s genes and their functions, knowledge that should open the door for researching ways to control the insect.
Found only in Africa, tsetse flies are vectors for the single-cell parasites that cause trypanosomiasis, or nagana, an often-lethal disease that affects some 3 million animals in the region each year at massive costs to farmers’ livelihoods and food security.
The disease leads to a debilitating chronic condition that reduces fertility, weight gain, meat and milk production, and makes livestock too weak to be used for ploughing or transport, which in turn affects crop production.
Humans bitten by carrier flies can develop African sleeping sickness, which can be fatal without treatment.
No vaccine against the disease exists for livestock or humans because the parasite is able to evade mammalian immune systems, so control methods primarily involve targeting tsetse flies through trapping, pesticide treatments and sterile male release strategies.
“Decoding the tsetse fly’s DNA is a major scientific breakthrough that opens the way for more effective control of trypanosomiasis, which is good news for millions of herders and farmers in sub-Saharan Africa,” said Kostas Bourtzis of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture.
“Detection and treatment of trypanosomiasis is currently expensive, difficult and dangerous for the livestock as it often involves toxic drugs, but this new knowledge will accelerate research on tsetse control methods and help scientists develop new and complementary strategies to reduce the use of costly drugs and insecticides,” he said.
Unique biology
Læs hele artiklen her: http://www.fao.org/news/story/en/item/224942/icode/